Abstract

With the expected increase in the use of hydrogen as an energy carrier, large-scale underground storage sites will be needed. Unlike underground natural gas storage (UGS), many aspects on the performance of underground hydrogen storage (UHS) are not well understood, as there is currently no UHS in use for energy supply. Here we present the results of a detailed comparative performance study of UGS and UHS, based on an inflow/outflow nodal analysis. Three UGS sites in depleted gas fields and one in a salt cavern cluster in the Netherlands are used as case studies. The results show that although hydrogen can be withdrawn/injected at higher rates than natural gas, this can be limited by technical constraints. It also indicates that wider ranges of working pressures are required to increase the storage capacity and flow performance of an UHS site to compensate for the lower energy density of hydrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call