Abstract
The vibrational fine structure of x-ray photoelectron (XP) spectra of a number of different small hydrocarbon molecules and reaction intermediates adsorbed on Pt(111) and Ni(111) has been investigated in detail. The data for methyl, methylidyne, acetylene, and ethylene can consistently be analyzed within the linear coupling model. The S factor, i.e., the intensity ratio of the first vibrationally excited to the adiabatic transition, is obtained to be 0.17+/-0.02 per C-H bond; for the deuterated species a value of 0.23+/-0.02 is obtained. Therefore, the vibrational fine structure can be used for fingerprinting in the analysis of XP spectra and for identifying unknown reaction intermediates. From the data, Deltar, the change of the minimum in the potential energy curve upon core ionization, is calculated within the linear coupling model using a first order correction. For all adsorbates, including the deuterated ones, a value of Deltar=0.060+/-0.004 A is obtained. Furthermore, from the binding energy of the adiabatic peak and from the energy of the vibrational excitation in the ionic final state some information on the adsorbate/substrate bond and the adsorption site can be derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.