Abstract
Supercritical flow through a horizontal pipe leads to a non-uniform peripheral wall temperature distribution even when the wall heat flux is kept constant and uniform. This is attributed to lower heat transfer coefficient at the top section where the denser fluid tends to sink. Hence, to obtain a uniform wall temperature, a designed wall roughness is devised. Uniform sand-grain roughness is employed to only partly cover the top half of the pipe wall. Numerical simulations were conducted using the SST k−ω turbulence model. The simulation results indicate that our proposed design can lead to a more uniform heat transfer distribution over the wall periphery compared with the smooth pipe. An extreme case was also considered where the inner wall was completely covered with roughness elements. While heat transfer augmentation was observed for this case, the excess pressure drop was prohibitively higher compared with a pipe with designed wall roughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.