Abstract

New therapeutic agents for Candida albicans vaginitis are urgently awaiting to be developed because of the increasing antibiotic resistance of C. albicans. Antimicrobial peptides (AMPs) are one of the most promising choices for next-generation antibiotics. In this study, novel peptides were designed based on snake venom antimicrobial peptide cathelicidin-BF to promote anti-C. albicans activity and decrease side-effects. The designing strategies include substitutions of charged or hydrophobic amino acid residues for noncharged polar residues to promote antimicrobial activity and insertion of a hydrophobic residue in the hydrophilic side of the helix structure to reduce hemolysis. A designed tryptophan and lysine/arginine-rich cationic peptide 4 (ZY13) (VKRWKKWRWKWKKWV-NH2) exhibited excellent antimicrobial activity against either common strain or clinical isolates of antibiotic-resistant C. albicans with little hemolysis. Peptide 4 showed significant therapeutic effects on vaginitis in mice induced by the infection of clinical antibiotic-resistant C. albicans. The approaches herein might be useful for designing of AMPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.