Abstract

The role of amino acid sequence in conformational switching observed in prions and proteins associated with amyloid diseases is not well understood. To study alpha to beta conformational transitions, we designed a series of peptides with structural duality; namely, peptides with sequence features of both an alpha-helical leucine zipper and a beta-hairpin. The parent peptide, Template-alpha, was designed to be a canonical leucine-zipper motif and was confirmed as such using circular dichroism spectroscopy and analytical ultracentrifugation. To introduce beta-structure character into the peptide, glutamine residues at sites away from the leucine-zipper dimer interface were replaced by threonine to give Template-alphaT. Unlike the parent peptide, Template-alphaT underwent a heat-inducible switch to beta-structure, which reversibly formed gels containing amyloid-like fibrils. In contrast to certain other natural proteins where destabilization of the native states facilitate transitions to amyloid, destabilization of the leucine-zipper form of Template-alphaT did not promote a transformation. Cross-linking the termini of the peptides compatible with the alternative beta-hairpin design, however, did promote the change. Furthermore, despite screening various conditions, only the internally cross-linked form of the parent, Template-alpha, peptide formed amyloid-like fibrils. These findings demonstrate that, in addition to general properties of the polypeptide backbone, specific residue placements that favor beta-structure promote amyloid formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.