Abstract

The present study aims to design a self-microemulsion delivery system (d-α-tocopheryl polyethylene glycol 1000 succinate - quillaja saponin) to enhance the absorptivity of dihydromyricetin (DMY-S), and to investigate its dietary intervention effect on high-fat-diet (HFD) fed mice. We find DMY-S can inhibit the increase of body weight and fat mass, preventing non-alcoholic fatty liver disease. Compared to the model group, the abundance of mice intestinal flora is mainly changed in certain bacterial genera of Firmicutes and Bacteroides, including norank_f_Muribaculaceae and Blautia. The result of metabolism analysis indicated that the expression levels of cincassiol B, creatine, pantothenic acid and aminobutyric acid in the liver tissues of mice treated with DMY-S showed a down-regulation. The DMY-S prevented hyperlipidemia in HFD mice mainly by affecting different pathways including glycerophospholipid metabolism, sphingolipid metabolism and pantothenate and CoA biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.