Abstract

Specific helix-helix interactions underpin the correct assembly of multipass membrane proteins. Here, we show that a designed buried salt bridge mediates heterodimer formation of model transmembrane helical peptides in a pH-dependent manner. The model peptides bear side chains functionalized with either a carboxylic acid or a primary amine within a hydrophobic segment. The association behavior was monitored by Förster resonance energy transfer, revealing that heterodimer formation is maximized at a pH close to neutrality (pH 6.5), at which each peptide is found in a charged state. In contrast, heterodimerization is disfavored at low and high values of pH, because either the carboxylic acid or the primary amine is present in its neutral state, thus preventing the formation of a salt bridge. These findings provide a blueprint for the design and modulation of protein-protein interactions in membrane proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.