Abstract

Sustainable design for carbon-neutral buildings requires a thorough understanding of environmental building performance. The urgent need to reduce greenhouse gas emissions radically creates additional demands for architectural education and practice. These demands challenge conventional educational building design and architecture programs. A new pedagogical approach to the architectural studio is presented that specifically responds to this challenge. A highly structured 10-stage workflow for architectural design equips students with knowledge, tools, and processes to integrate and predict dynamic performances of light, sun, heat, and air movement in their design decisions. This pedagogical approach has been used in ARCH 601, a required sustainable design studio in the second year of the professional Master of Architecture program at Iowa State University, US. A specific emphasis is placed on the iterative feedback between daylighting, natural ventilation, and the building’s enclosure. In an effort to understand the impact of this pedagogical approach on the career of former students, a survey was sent to the graduates of the past five years. A majority reported the positive learning outcomes and importance to their current career. Practice relevance The architectural profession is moving toward the creation of carbon-neutral buildings. A new approach to architectural education is shown to equip architecture students to meet this challenge. An architectural studio approach allows students to integrate and predict the dynamic performances of light, sun, heat, and air movement, based on using an innovative, highly structured workflow method. An alumni survey provides insights into the relevance and impact of this approach on their career. Learning these skills made architectural students better equipped to address sustainable design in their career. The workflow can be easily adopted by other architectural courses and practices. This can help to accelerate the education of architectural students towards carbon neutrality.

Highlights

  • Through exclusively social contracts, we have abandoned the bond that connect us to the world, the one that binds the time passing and flowing to the weather outside, the bond that relates the social sciences to the sciences of the universe, history to geography, law to nature, politics to physics, the bond that allows our language to communicate with mute, passive, obscure things—things that, because of our excesses, are recovering voice, presence, activity, light

  • The workflow: The sequence of design parameters 3.1 Stages 1 and 2: Climate and radiation analysis To develop volumetric concepts, the students study the relationship of space and environmental forces first. (The 2016 project was in Ogden, Iowa, the site of a 1954 elementary school building that was under threaten of decommissioning.) The energy performance of buildings depends on their potential to use solar radiation onsite in winter and sheltering the interior from solar radiation in summer while still providing sufficient daylighting and ventilation

  • All prior design decisions have contributed to reducing the energy use, which needs to be produced by the PV array. (Figure S4 in the supplemental data online shows a visualization of this student work.) Bringing this balance to a net-zero-energy balance is the first step to carbon neutrality; the second is the consideration of embodied energy and carbon; this final goal is met by the reuse of an existing building

Read more

Summary

Introduction

We have abandoned the bond that connect us to the world, the one that binds the time passing and flowing to the weather outside, the bond that relates the social sciences to the sciences of the universe, history to geography, law to nature, politics to physics, the bond that allows our language to communicate with mute, passive, obscure things—things that, because of our excesses, are recovering voice, presence, activity, light. The goal of ARCH 601 is to prepare students with the skills to design carbon-neutral buildings as one criterion within the wider scope of sustainable design using mainly passive design strategies, passive solar, passive cooling, natural ventilation, and daylighting, which are inherently spatial architectural strategies using space for the conversion, distribution, and storage of solar energy already promoted by Lyle (1994), but refined by Passe & Battaglia (2015), amongst others. The author developed its program of study to better equip students during the early design phase with the knowledge and tools to integrate and predict the interaction of their design with the physical world, and the impact of the dynamic performances of light, sun, heat, and air movement on their design, when especially natural ventilation and daylighting are complex and dynamic phenomena This studio challenges students to develop integrative design projects, a major requirement of a professional architecture program (NAAB 2020) that explores the relationship between buildings, climate, socioeconomic factors, and environmental forces. The conclusions consider the viability of this method for wider architectural education and the rapid transition of the architectural profession

Site context
The workflow
Stage 3
Stages 4 and 5
Stages 5 and 6
Stage 8: Detail interlude
Stage 9
Stage 10
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call