Abstract
An inverse design technique to design turbomachinery blading with splitter blades in three-dimensional flow is developed. It is based on the use of Clebsch transformation, which allows the velocity field to be written as a potential part and a rotational part. It is shown that the rotational part can be expressed in terms of the mean swirl schedule (the circumferential average of the product of radius and tangential velocity) and the blade geometry that includes the main blade as well as the splitter blade. This results in an inverse design approach, in which both the main and the splitter blade geometry are determined from a specification of the swirl schedule. Previous design study of a heavily loaded radial inflow turbine, without splitter blades, for a rather wide variety of specified mean swirl schedules results in a blade shape with unacceptable nonradial blade filament; the resulting reduced static pressure distribution yields an “inviscid reverse flow region” covering almost the first half of the blade pressure surface. When the inverse design technique is applied to the design study of the turbine wheel with splitter blades, the results indicate that the use of splitter blades is an effective means for making the blade filament at an axial location more radial as well as a potential means for eliminating any “inviscid reverse flow” region that may exist on the pressure side of the blades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.