Abstract
Deploying convolutional neural networks (CNNs) in embedded devices that operate at the edges of Internet of Things (IoT) networks provides various advantages in terms of performance, energy efficiency, and security in comparison with the alternative approach of transmitting large volumes of data for processing to the cloud. However, the implementation of CNNs on low power embedded devices is challenging due to the limited computational resources they provide and to the large resource requirements of state-of-the-art CNNs. In this paper, we propose a framework for the efficient deployment of CNNs in low power processor-based architectures used as edge devices in IoT networks. The framework leverages design space exploration (DSE) techniques to identify efficient implementations in terms of execution time and energy consumption. The exploration parameter is the utilization of hardware resources of the edge devices. The proposed framework is evaluated using a set of 6 state-of-the-art CNNs deployed in the Intel/Movidius Myriad2 low power embedded platform. The results show that using the maximum available amount of resources is not always the optimal solution in terms of performance and energy efficiency. Fine-tuned resource management based on DSE, reduces the execution time up to 3.6% and the energy consumption up to 7.7% in comparison with straightforward implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.