Abstract

Probabilistic programming languages have the potential to make probabilistic modeling and inference easier to use in practice, but only if inference is sufficiently fast and accurate for real applications. Thus far, this has only been possible for domain-specific languages that focus on a restricted class of models and inference algorithms. This paper proposes a design for a probabilistic programming language called Gen, embedded in Julia, that aims to be sufficiently expressive and performant for general-purpose use. The language provides constructs for automatically generating optimized implementations of custom inference tactics based on static analysis of the target probabilistic model. This paper informally describes a language design for Gen, and shows that Gen is more expressive than Stan, a widely used language for hierarchical Bayesian modeling. A first benchmark shows that a prototype implementation of Gen can be as fast as Stan, only ∼1.4x slower than a hand-coded sampler in Julia, and ∼7,500x faster than Venture, one of the only other probabilistic languages with support for custom inference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.