Abstract

The ability to manipulate the genome in a programmable manner has illuminated biology and shown promise in plant breeding. Prime editing, a versatile gene-editing approach that directly writes new genetic information into a specified DNA site without requiring double-strand DNA breaks, suffers from low efficiency in plants1-5. In this study, N-terminal reverse transcriptase-Cas9 nickase fusion performed better in rice than the commonly applied C-terminal fusion. In addition, introduction of multiple-nucleotide substitutions in the reverse transcriptase template stimulated prime editing with enhanced efficiency. By using these two methods synergistically, prime editing with an average editing frequency as high as 24.3% at 13 endogenous targets in rice transgenic plants, 6.2% at four targets in maize protoplasts and 12.5% in human cells was achieved, which is two- to threefold higher than the original editor, Prime Editor 3. Therefore, our optimized approach has potential to make more formerly non-editable target sites editable, and expands the scope and capabilities of prime editing in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.