Abstract
Fuzzy models have been commonly used in system modeling and model-based control. Among various fuzzy models, Takagi–Sugeno (TS) fuzzy models form one of the intensively studied and applied categories of models. In this study, we are concerned with a development of a granular TS fuzzy model realized on a basis of numerical evidence and completed through a combination of fuzzy subspace clustering and the principle of optimal allocation of information granularity. The TS fuzzy models are built with the use of the fuzzy subspace clustering algorithm. Information granularity is regarded as a crucial design asset whose optimal allocation gives rise to granular fuzzy models and makes the constructed models to become better in rapport with experimental data. In comparison with fuzzy models, granular fuzzy models produce results (outputs) that are information granules rather than numeric entities being encountered in fuzzy models. In contrast with the commonly used optimization criteria, which emphasize the highest accuracy encountered at the numeric level, the performance of the granular TS fuzzy model is quantified in terms of the coverage and specificity criteria where such criteria are of interest in the evaluation of quality of information granules vis-a-vis experimental (numeric) data. Experimental results are reported for both synthetic datasets and publicly available data sets coming from the UCI machine learning repository.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.