Abstract
The firing squad synchronization problem (FSSP) on cellular automata has been studied extensively for more than 50 years, and a rich variety of FSSP algorithms has been proposed. Here we consider the FSSP from a view point of state-change complexity that models the energy consumption of SRAM-type storage with which cellular automata might be built. In the present paper, we propose minimum-state-change generalized FSSP (GFSSP) algorithms for synchronizing any one-dimensional (1D) cellular automaton, where the initial synchronization operation is started by any cell in the array. First, we construct two minimum-time, minimum-state-change GFSSP implementations on finite state automata: one is based on Goto’s algorithm, known as the first minimum-time FSSP algorithm that was reconstructed again recently in Umeo et al. (A new reconstruction and the first implementation of Goto’s FSSP algorithm, 2017), and the other is based on Gerken’s (Diplomarbeit, Institut fur Theoretische Informatik, Technische Universitat Braunschweig, pp 1–50, 1987) one. These implementations are optimal not only in time but also in the state-change complexity. The implementations of the minimum-time GFSSP algorithms are the first ones having the minimum-state-change complexity. In addition, we also present a six-state 145-rule non-minimum-time, minimum-state-change GFSSP implementation. The implemented GFSSP algorithm is the smallest one, known at present, in number of states of the finite state automaton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.