Abstract
This paper presents a synchronization scheme of bilateral teleoperation systems using composite adaptive controller. To design a controller for bilateral teleoperation systems, all the parameters of the master and the slave robots need to be known. However, there exist parameter uncertainties in the robot manipulators. A composite adaptive controller is designed for convergence of states and parameters of the master and the slave robots in the presence of parameter uncertainties. Consequently, position and force tracking problems in free and contact motion are solved in a synchronized manner. Through a number of simulations, the superiority of the proposed method over existing works is illustrated. Furthermore, for the validation of utility of the proposed method in an actual embedded system, the algorithms are implemented and tested in FPGA-based hardware controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.