Abstract

The design of novel plastic scintillation detectors (PSDs) is impeded by the lack of a suitable framework to simulate and predict their performance. The authors propose to use the signal-to-noise ratio (SNR) to model the performance of PSDs that use charge-coupled devices (CCDs) as photodetectors. In PSDs using CCDs, the SNR is inversely related to the normalized standard deviation of the dose measurement. Thus, optimizing the SNR directly optimizes the system's precision. In this work, a model of SNR as a function of the system parameters is derived for optical fiber-based PSD systems. Furthermore, this proposed model is validated using experimental results. A formula for the efficiency of fiber coupling to CCDs is derived and used to simulate the performance of a PSD under varying magnifications. The proposed model is shown to simulate the experimental performance of an actual PSD to a suitable degree of accuracy under various conditions. The SNR constitutes a useful tool to simulate the dosimetric precision of PSDs. Using the SNR model, recommendations for the design and optimization of PSDs are provided. Using the same framework, recommendations for non-fiber-based PSDs are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.