Abstract

A part of the mission of the new NHMFL is to have available for users in 1995 a hybrid magnet system capable of producing at least 45-T steady field on axis in a 33-mm working bore. Approximately 31 T of the combined field will be produced by a water-cooled insert. The superconducting outsert, which combines NbTi and Nb/sub 3/Sn conductor technologies, will provide more than 14 T. The authors describe an option for this superconducting outsert based on the cable-in-conduit-conductor (CICC) approach, where cabled strands of conductor are contained in intimate contact with helium coolant inside a strong steel sheath that also acts as distributed structure. A departure from the usual practice for CICC technology is in the application of static Hell cooling, which simultaneously provides higher conductor performance and nearly passive extraction of the rather modest heat loads during normal operation of the magnet system.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.