Abstract
Low energy accelerator driven neutron sources are promising candidates to obtain a neutron yield as high as 1014 n/s, which is required for a variety of applications, such as boron neutron capture therapy, neutron imaging, and neutron scattering. The methods to generate neutrons can be divided into two categories: hadron-based and photon-based methods. In order to better understand which kind of source would be the better choice for delivering a brilliant neutron beam robustly, in this paper, the underlying principles of neutron production, as well as the simulation results of neutron yield, target heat dissipation, thermal stress, and reaction byproducts concentration of these two types of neutron sources, will be elaborated on. A preliminary photoneutron target station design based on a 50 MeV/50 kW electron linear accelerator, including the optimized neutron yield, thermal hydraulic analysis, and shielding calculation, is presented as well to demonstrate the method to deliver brilliant thermal neutron beam of 1.03 × 1010 cm-2 s-1 sr-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.