Abstract

Additive Manufacturing (AM) provides several benefits for aerospace companies in terms of efficient and innovative product development. However, due to the general lack of AM process understanding, engineers face many uncertainties related to product qualification during the design of AM components. The aim of this paper is to further the understanding of how to cope with the need to develop process understanding, while at the same time designing products that can be qualified. A qualitative action research study has been performed, using the development of an AM rocket engine turbine demonstrator as a case study. The results show that the qualification approach should be developed for the specific application, dependent on the AM knowledge within the organization. AM knowledge is not only linked to the AM process but to the complete AM process chain. Therefore, it is necessary to consider the manufacturing chain during design and to develop necessary knowledge concurrently with the product in order to define suitable requirements. The paper proposes a Design for Qualification framework, supported by six design tactics. The framework encourages proactive consideration for qualification and the capabilities of the AM process chain, as well as the continuous development of AM knowledge during product development.

Highlights

  • Metal Additive Manufacturing (AM) has rapidly increased in popularity for the development and manufacturing of end-use products

  • Section is the analysis of the case study, leading to the formulation of the framework for development products for space applications with particular attention to aspects related to qualification

  • This approach is by nature prone to be the case for AM as a new technology and as argued by for example, NASA Marshall Space Flight Center (MSFC), a necessary approach in developing requirements for AM [23] (p. 211)

Read more

Summary

Introduction

Metal Additive Manufacturing (AM) has rapidly increased in popularity for the development and manufacturing of end-use products. There are challenges in ascertaining the quality of products manufactured with AM, especially in applications with strict requirements on performance and reliability [2,3]. Such applications are typical in the space industry where AM is seen as a key manufacturing technology in the future, having the potential to simplify supply chains, reduce lead time and manufacturing cost, as well as increase design flexibility and product performance [4,5,6]. In order to achieve such drastic cost reductions for space applications, new industrial system set-ups are needed, combined with extreme design-to-cost, efficient product development and the use of AM [8,9]. Examples of AM space components that have been used in service are brackets for satellite antennas [10], brackets for spacecraft waveguides [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call