Abstract

Described is a design for high-speed low-power-consumption fully parallel content-addressable memory (CAM) macros for CMOS ASIC applications. The design supports configurations ranging from 64 words by 8 bits to 2048 words by 64 bits and achieves around 7.5-ns search access times in CAM macros on a 0.35-/spl mu/m 3.3-V standard CMOS ASIC technology. A new CAM cell with a pMOS match-line driver reduces search rush current and power consumption, allowing a NOR-type match-line structure suitable for high-speed search operations. It is also shown that the CAM cell has other advantages that lead to a simple high-speed current-saving architecture. A small signal on the match line is detected by a single-ended sense amplifier which has both high-speed and low-power characteristics and a latch function. The same type of sense amplifier is used for a fast read operation, realizing 5-ns access time under typical conditions. For further current savings in search operations, the precharging of the match line is controlled based on the valid bit status. Also, a dual bit switch with optimized size and control reduces the current. CAM macros of 256/spl times/54 configuration on test chips showed 7.3-ns search access time with a power-performance metric of 131 fJ/bit/search under typical conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.