Abstract

The paper presents a theoretical and an experimental investigation into the plastic collapse of circular steel corrugated cylinders under external hydrostatic pressure. The experimental investigation gives a detailed study of 9 steel corrugated cylinders which were tested to destruction. Six of these cylinders failed by plastic non-symmetric bifurcation buckling and three failed by plastic axisymmetric deformation. The results of these tests were used, together with the results obtained from previous tests, to present a design chart for the plastic collapse of these vessels. The design chart was obtained by a semi-empirical approach, where the thinness ratios of the vessels were plotted against their plastic knockdown factors. The process of using the design chart is to calculate the theoretical elastic instability pressure for a perfect vessel by the finite element method and also to calculate the thinness ratio for this vessel. Using the appropriate value of the thinness ratio, the plastic knockdown factors are obtained from the design chart. To obtain the actual collapse pressure of the vessel, the theoretical elastic instability pressure for a perfect vessel is divided by the plastic knockdown factor. This work is of importance in ocean engineering. A large safety factor must also be introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.