Abstract

This paper formulates a mixed integer linear programming (MILP) model to optimize a system of electric vehicle (EV) charging stations. Our methodology introduces a two-stage framework that integrates the first-stage system design problem with a second-stage control problem of the EV charging stations and develops a design and analysis of computer experiments (DACE) based system design optimization solution method. Our DACE approach generates a metamodel to predict revenue from the control problem using multivariate adaptive regression splines (MARS), fit over a binned Latin hypercube (LH) experimental design. Comparing the DACE based approach to using a commercial solver on the MILP, it yields near optimal solutions, provides interpretable profit functions, and significantly reduces computational time for practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.