Abstract
Safety-critical aerospace systems require stringent stabilization or tracking performance that have to be guaranteed in the face of large system uncertainties and abrupt changes on system dynamics. Considering Model Reference Adaptive Control (MRAC) schemes, while aggressive adaptation rates can, theoretically, produce a fast convergence of the tracking error to zero, this is often achieved at the expense of high frequency chattering and peaking in the control signal that could be unacceptable for practical applications. Due to the inherent nonlinear nature of MRAC schemes it is not easy to rigorously predict the response of the uncertain adaptive systems especially during transients. This is testified by the lack of clear and easy verification procedures for existing adaptive control schemes that relate design parameters to time domain specifications. To face this problem, we propose a design and validation framework where stability and performance requirements for the adaptive system are all formulated in terms of Linear Matrix Inequalities. This brings the advantage that the adaptive controller design and verification can be analyzed and optimized through the solution of a convex optimization whose objective is to guarantee the evolution of the error components within an a-priori specified invariant set. This approach was applied to verify the performance of a recently introduced MRAC scheme featuring a feedback contribution in the reference model that is proportional to the current tracking error. This architecture is deemed particularly appropriate to face uncertainty in real applications. A detailed design example applied to a generic flexible structure aircraft transport model is presented to highlight the efficacy of the proposed verification architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.