Abstract
Understanding the impact of sessile communities on underlying materials is of paramount importance in stone conservation. Up until now, the critical role of subaerial biofilms (SABs) whether they are protective or deteriorative remains unclear, especially under desiccation. The interest in desiccated SABs is raised by the prediction of an increase in drought events in the next decades that will affect the Mediterranean regions' rich stone heritage as never before. Thus, the main goal of this research is to study the effects of desiccation on both the biofilms' eco-physiology and its impacts on the lithic substrate. To this end, we used a dual-species model system composed of a phototroph and a chemotroph to simulate biofilm behavior on stone heritage. We found that drought altered the phototroph-chemotroph balance and enriched the biofilm matrix with proteins and DNA. Desiccated SABs underwent a shift in metabolism to fermentation and a decrease in oxidative stress. Additionally, desiccated SABs changed the water-related dynamics (adsorption, evaporation, and wetting properties) in limestone. Water absorption experiments showed that desiccated SABs protected the stone from rapid water uptake, while a thermographic survey indicated a delay in water evaporation. Spilling-drop tests revealed a change in the wettability of the stone-SAB interface, which affected the water transport properties of the stone. Finally, desiccated SABs reduced stone swelling in the presence of water vapor. The biodeteriorative and bioprotective implications of desiccated SABs on the stone were ultimately assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.