Abstract

This study investigated the sprint cycling performance and neuromuscular characteristics of Paralympic athletes with cerebral palsy (CP) during a fatiguing maximal cycling trial compared with those of able-bodied (AB) athletes. Five elite athletes with CP and 16 AB age- and performance-matched controls performed a 30-sec Wingate cycle test. Power output (W/kg) and fatigue index (%) were calculated. Electromyography was measured in five bilateral muscles and expressed in mean amplitude (mV) and median frequency (Hz). Power output was significantly higher in the AB group (10.4 [0.5] W/kg) than in the CP group (9.8 [0.5] W/kg) (P < 0.05). Fatigue index was statistically similar between the AB (27% [0.1%]) and CP (25% [0.1%]) groups. Electromyographic mean amplitude and frequency changed similarly in all muscle groups tested, in both affected and nonaffected sides, in the CP and AB groups (P < 0.05). Neuromuscular irregularities were identified in the CP group. The similarity in fatigue between the CP and AB groups indicates that elite athletes with CP may have a different exercise response to others with CP. The authors propose that this may result from high-level training over many years. This has rehabilitative implications, as it indicates near-maximal adaptation of the CP body toward normal levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call