Abstract

This study was undertaken to characterize the mechanism of toxicokinetic interaction between toluene (TOL) and m-xylene (XYL) in the rat using physiologically-based toxicokinetic (PBTK) modeling approach. First, the metabolic rate constants were determined by conducting closed-chamber inhalation exposures with individual solvents (Vmax: TOL = 4.8, XYL = 8.4 mg/hr/kg; Km: TOL = 0.55, XYL = 0.2 mg/l). Then, using the same experimental set-up, rats were exposed to different binary mixtures of TOL and XYL. PBTK analysis of the data showed competitive inhibition as the plausible mechanism of TOL/XYL interaction. This mechanistic modeling study suggests that the interaction between TOL and XYL is likely to be observed when the exposure concentration exceeds 50 ppm of each solvent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.