Abstract
AbstractContinuum damage mechanics describes the progressive deterioration of material subjected to loading. Jointly used with a level-set method, it proves to be a promising approach to computing the interface motion of a damaged material. For polycrystalline ice, a local isotropic damage evolution law (generalized Kachanow’s law) applied to Glen’s flow law allows the description of tertiary creep and facilitates the modeling of crevasse opening using a failure criterion based on damage accumulation. The use of a level-set method permits the description, in a continuum approach, of the motion of a fractured glacier surface. Using these methods, a model is developed. The ability of this model to describe phenomena connected to crevasse opening is presented. The rupture of a large ice block from a hanging glacier is computed and analyzed. The regular acceleration of such an unstable ice block prior to its collapse is calculated and compared to the acceleration function obtained from observations. A good agreement between the two acceleration functions was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.