Abstract

Abstract This paper describes an automated approach to track Rossby wave packets (RWPs), and the sensitivity of various tracking parameters and methods used in filtering the raw data in the feature-based tracking. The NCEP–NCAR reanalysis meridional wind and geopotential height data at 300 hPa every 6 h were spectrally filtered using a Hilbert transform technique under the assumption that RWPs propagate along a waveguide defined by the 14-day running average of the 300-hPa wind. After some spatial and temporal smoothing, the local maxima in RWP amplitude (WPA) were tracked using two objective techniques: a point-based cost optimization routine and a hybrid approach using point identification and object-based tracking following rules. A variation of the total energy flux term of the eddy kinetic energy equation was used to subjectively verify RWP tracks in order to compare the performance of each tracking method. When tracking methods are verified over two winter seasons, the hybrid technique outperformed point-based tracking, particularly for track duration and propagation. Problems with tracking were found to be most common during periods when two RWPs merge, one RWP splits into multiple packets, or an RWP moves from one storm track to another. RWPs are found to move irregularly rather than linearly, with their motion and intensity best described as pulse like. The sensitivity to some of the parameters used in the tracking was also explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.