Abstract

A tolerant derivative–free nonmonotone line-search technique is proposed and analyzed. Several consecutive increases in the objective function and also nondescent directions are admitted for unconstrained minimization. To exemplify the power of this new line search we describe a direct search algorithm in which the directions are chosen randomly. The convergence properties of this random method rely exclusively on the line-search technique. We present numerical experiments, to illustrate the advantages of using a derivative-free nonmonotone globalization strategy, with approximated-gradient type methods and also with the inverse SR1 update that could produce nondescent directions. In all cases we use a local variation finite differences approximation to the gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call