Abstract

Recently a new derivative-free algorithm has been proposed for the solution of linearly constrained finite minimax problems. This derivative-free algorithm is based on a smoothing technique that allows one to take into account the non-smoothness of the max function. In this paper, we investigate, both from a theoretical and computational point of view, the behavior of the minmax algorithm when used to solve systems of nonlinear inequalities when derivatives are unavailable. In particular, we show an interesting property of the algorithm, namely, under some mild conditions regarding the regularity of the functions defining the system, it is possible to prove that the algorithm locates a solution of the problem after a finite number of iterations. Furthermore, under a weaker regularity condition, it is possible to show that an accumulation point of the sequence generated by the algorithm exists which is a solution of the system. Moreover, we carried out numerical experimentation and comparison of the method against a standard pattern search minimization method. The obtained results confirm that the good theoretical properties of the method correspond to interesting numerical performance. Moreover, the algorithm compares favorably with a standard derivative-free method, and this seems to indicate that extending the smoothing technique to pattern search algorithms can be beneficial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.