Abstract
Organic radicals are fascinating materials because of their unique properties, which make them suitable for a variety of applications. Their synthesis may be challenging, and big efforts have focused on chemical stability. However, introducing a new material in electronics not only requires chemically stable molecules but also stable monolayers and thin films in view of their use in devices. In this work, we have investigated the thin films of a derivative of the Blatter radical that was synthesized bearing in mind the thermodynamic factors that govern thin film stability. We have proved our concept by investigating the electronic structure, the paramagnetic character, and stability of the obtained films under UHV and ambient conditions by in situ X-ray photoelectron spectroscopy, ex situ atomic force microscopy, and electron paramagnetic resonance spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.