Abstract

We propose a derivative-free trust region algorithm with a nonmonotone filter technique for bound constrained optimization. The derivative-free strategy is applied for special minimization functions in which derivatives are not all available. A nonmonotone filter technique ensures not only the trust region feature but also the global convergence under reasonable assumptions. Numerical experiments demonstrate that the new algorithm is effective for bound constrained optimization. Locally, optimal parameters with respect to overall computational time on a set of test problems are identified. The performance of the best choice of parameter values obtained by the algorithm we presented which differs from traditionally used values indicates that the algorithm proposed in this paper has a certain advantage for the nondifferentiable optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.