Abstract
In this paper, based on the projection strategy, we propose a derivative-free iterative method for large-scale nonlinear monotone equations with convex constraints, which can generate a sufficient descent direction at each iteration. Due to its lower storage and derivative-free information, the proposed method can be used to solve large-scale non-smooth problems. The global convergence of the proposed method is proved under the Lipschitz continuity assumption. Moreover, if the local error bound condition holds, the proposed method is shown to be linearly convergent. Preliminary numerical comparison shows that the proposed method is efficient and promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.