Abstract

In this paper, a derivative-free affine scaling linear programming algorithm based on probabilistic models is considered for solving linear inequality constrainted optimization problems. The proposed algorithm is designed to build probabilistic linear polynomial interpolation models using only n + 1 interpolation points for the objective function and reduce the computation cost for building interpolation function. We build the affine scaling linear programming methods which use probabilistic or random models and affine matrix within a classical linear programming framework. The backtracking line search technique can guarantee monotone descent of the objective function, and by using this technique, the new iterative points are located within the feasible region. Under some reasonable conditions, the global and local fast convergence of the algorithm is shown, and the results of numerical experiments are reported to show the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.