Abstract
Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy–Brinkman–Forchheimer-type formulation, and the convective–diffusive transport of the conductivity field in the depth direction manifests itself as a dispersion effect on the in-plane conductivity field. The validity of the model is assessed by comparing the numerical results with full three-dimensional direct numerical simulations, and experimental data. The depth-averaged equations provide the accuracy of three-dimensional modelling with a convenient two-dimensional equation set applicable to a wide class of microfluidic devices.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.