Abstract

Functional DNA nanostructures have been widely used in various bioassay fields. Yet, the programmable assembly of functional DNA nanostructures in living cells still represents a challenging goal for guaranteeing the sensitive and specific biosensing utility. In this work, we report a self-catalytic DNA assembly (SDA) machine by using a feedback deoxyribozyme (DNAzyme)-amplified branched DNA assembly. This SDA system consists of catalytic self-assembly (CSA) and DNAzyme amplification modules for recognizing and amplifying the target analyte. The analyte initiates the CSA reaction, leading to the formation of Y-shaped DNA that carries two RNA-cleaving DNAzymes. One DNAzyme can then successively cleave the corresponding substrate and generate numerous additional inputs to activate new CSA reactions, thus realizing a self-catalytic amplification reaction. Simultaneously, the other DNAzyme is assembled as a versatile signal transducer for cleaving the fluorophore/quencher-modified substrate, leading to the generation of an amplified fluorescence readout. By incorporating a flexible auxiliary sensing module, the SDA system can be converted into a universal sensing platform for detecting cancerous biomarkers, e.g., a well-known oncogene microRNA-21 (miR-21). Moreover, the SDA system realized the precise intracellular miR-21 imaging in living cells, which is attributed to the reciprocal amplification property between CSA reactions and DNAzyme biocatalysis. This compact SDA amplifier machine provides a universal and facile toolbox for the highly efficient identification of cancerous biomarkers and thus holds great potential for early cancer diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call