Abstract

We have developed a novel LC-UV-MS derivatization method for the analysis of deoxyguanosine monophosphate adducts that demonstrates enhanced signal intensities relative to underivatized analytes in positive ion mode electrospray ionization MS. Detection of DNA nucleotide adducts is normally conducted in negative ion mode, which requires basic mobile phases that make chromatographic separations difficult and reduce MS sensitivity. Utilizing coupling reagents typically employed in peptide synthesis, several different deoxyguanosine nucleotide phosphoramidates and phosphomonoesters were synthesized in high conversion yield and under mild reaction conditions. The derivatives were characterized by MS/MS and reaction conversion yields determined from the DAD-UV traces. The derivatives were evaluated for ionization efficiencies, fragmentation patterns, and reversed-phase chromatographic properties by LC/ESI-MS/MS. Overall, the hydrophobic derivatives showed increases in ionization efficiency and improved peak shape. Rank ordering of the derivatizing agents was initially established using the dGp-modified derivatives. The best derivatizing agent, hexamethyleneimine, showed a 3-4-fold signal enhancement compared to underivatized dGp and was selected for additional evaluation. A model system using the carcinogen, N-acetoxy-2-acetylaminofluorene (AAAF), was used to synthesize a N-acetyl-(2-aminofluorenyl)-guanosine 5'-monophosphate (dGpAAF) adduct, which was subsequently derivatized with hexamethyleneimine. Detection limits for dGphex and dGpAAFhex, purified by HPLC, were 10- and 3-fold higher (S/N) than their respective underivatized analogues. Practical applicability, with similar improvements in sensitivity, was established by derivatizing adducts isolated from calf thymus DNA exposed to AAAF. Our results demonstrate the utility of simple reactions for the enhanced detection of a mononucleotide in positive ion mode ESI MS and the application of this technique for the detection of dGp-DNA adducts at the low-femtomole level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.