Abstract

We consider a model of congestion dynamics with chemotaxis: the density of cells follows a chemical signal it generates, while subject to an incompressibility constraint. The incompressibility constraint results in the formation of patches, describing regions where the maximal density has been reached. The dynamics of these patches can be described by either Hele-Shaw or Richards equation type flow (depending on whether we consider the model with diffusion or the model with pure advection). Our focus in this paper is on the construction of weak solutions for this problem via a variational discrete time scheme of JKO type. We also establish the uniqueness of these solutions. In addition, we make more rigorous the connection between this incompressible chemotaxis model and the free boundary problems describing the motion of the patches in terms of the density and associated pressure variable. In particular, we obtain new results characterising the pressure variable as the solution of an obstacle problem and prove that in the pure advection case the dynamic preserves patches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call