Abstract

Electrophysiological muscle classification involves characterization of extracted motor unit potentials (MUPs) followed by the aggregation of these MUP characterizations. Existing techniques consider three classes (i.e., myopathic, neurogenic, and normal) for both MUP characterization and electrophysiological muscle classification. However, diseased-induced MUP changes are continuous in nature, which make it difficult to find distinct boundaries between normal, myopathic, and neurogenic MUPs. Hence, MUP characterization based on more than three classes is better able to represent the various effects of disease. Here, a novel, electrophysio- logical muscle classification system is proposed, which considers a dynamic number of classes for characterizing MUPs. To this end, a clustering algorithm called neighbor- hood distances entropy consistency is proposed to find clusters with arbitrary shapes and densities in an MUP feature space. These clusters represent several concepts of MUP normality and abnormality and are used for MUP characterization instead of the conventional three classes. An examined muscle is then classified by embedding its MUP characterizations in a feature vector fed to an ensemble of support vector machine and nearest neighbor classifiers. For 103 sets of MUPs recorded in tibialis anterior muscles, the proposed system had a 97% electro-physiological muscle classification accuracy, which is significantly higher than in previous works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.