Abstract

Gamma-alumina (γ-Al2O3), one of the most common materials, is commercially used in many catalytic applications, including the active catalyst and support. However, the problem of fast deactivation makes the utilization of the γ-Al2O3 challenging. This work elucidates the mechanism of coke formation consisting of coke deposition and evolution on γ-Al2O3(110) surfaces in differential conditions, including; clean and hydroxylation γ-Al2O3(110) in terms of partial and fully hydroxylation of OH/γ-Al2O3(110) and AlOOH(010), respectively. We demonstrated that the γ-Al2O3(110) surface is proper for atomic coke deposition and dimerization in the initial state, where the presence of OH species promotes the coke evolution to higher coke, Cn (where n ≥ 3). Also, the higher coke formation thermodynamically preferred the cyclic form to the aliphatic one. The electron transfer from substrates to adsorbed coke illustrates the role of the electron donor of catalyst surfaces corresponding to the electron acceptor of adsorbed cokes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.