Abstract

Density functional theory (DFT) has been used to determine reaction pathways for several reactions taking place on Pt(111) and Cu(111) surfaces. On Pt(111), the reactions of C+O and C+N were studied, and on Cu(111) we investigated the reaction of C+H. The structures of the transition states accessed in each reaction are similar. An equivalent distance separates the reactants with the first located at a three-fold hollow site and the second close to a bridge site. Previous DFT studies have, in fact, often identified transition states of this type and in every case it is the reactant with the weaker chemisorption energy that is located close to the bridge site. An explanation as to why this is so is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.