Abstract

AbstractSummary: Quantum chemistry was applied to the free radical polymerization of Vinyl Chloride with the aim of elucidating the reaction kinetics and especially the formation of structural defects and low molecular weight polymer. The radical reactions were studied using the Density Functional Theory. All calculations were performed with B3LYP functionals and in particular the 6‐31G(d,p) basis set was selected to evaluate the exchange and correlation energies. The computational method was first validated by predicting the rate constant of the propagation step and comparing the calculated values to experimental ones. Then intramolecular chain transfer, β‐scission and branching reactions were also investigated, due to their direct connection with the production of defects in the growing chains. A comparison of the evaluated kinetic constants of such secondary reactions with other computational evaluations and experimental data was finally made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.