Abstract

The addition of water to sulfur trioxide in liquid water has been studied using the ab initio molecular dynamics (MD) method. The hydration reaction observed in the MD simulation is spontaneous and, within a few hundred femtoseconds, yields a contact ion pair consisting of a hydrogen sulfate anion and a hydronium cation. The reaction mechanism is concerted: sulfur−oxygen bond formation and deprotonation of the hydrating water occur simultaneously. The reaction in solution is compared to two gas-phase additions, namely, the bare reaction with only the two reactants present and the reaction catalyzed by an additional water molecule. Both of these reactions lead to neutral products and require substantial amounts of activation energy. The gas-phase results have also been used to evaluate the accuracy of the BLYP (Becke−Lee−Yang−Parr) functional, which has been used in the ab initio MD to determine the density functional electronic structure. Whereas the calculated geometries of the sulfur trioxide−water com...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.