Abstract

Binary correlations are a recognized part of the pair density operator, but the influence of binary correlations on the singlet density operator is usually not emphasized. Here free motion and binary correlations are taken as independent building blocks for the structure of the nonequilibrium singlet and pair density operators. Binary correlations are assumed to arise from the collision of twofree particles. Together with the first BBGKY equation and a retention of all terms that are second order in gas density, a generalization of the Boltzmann equation is obtained. This is an equation for thefree particle density operator rather than for the (full) singlet density operator. The form for the pressure tensor calculated from this equation reduces at equilibrium to give the correct (Beth-Uhlenbeck) second virial coefficient, in contrast to a previous quantum Boltzmann equation, which gave only part of the quantum second virial coefficient. Generalizations to include higher-order correlations and collision types are indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.