Abstract

As many renewable energy resources are prone to an intermittent production of energy and the electric energy demand varies on daily and seasonal time-scales, it is critical to develop technologies which can reduce the residual between the production and the consumption of electric energy. By storing and releasing thermal energy and converting energy between thermal and electric phases, thermal energy storage (TES) systems can be used to reduce this residual. In this paper, we present a design methodology which can be used to improve the performance of TES systems by distributing two materials with different thermal characteristics in a two dimensional design space. The design methodology is developed with basis in density-based topology optimization and a transient potential flow model coupled with heat transfer. By solving a sequence of design problems, important model and optimization parameters are identified and the performance of TES systems is increased by 46% compared with benchmark designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.