Abstract

We report a universal density-based basis-set incompleteness correction that can be applied to any wave function method. This correction, which appropriately vanishes in the complete basis-set (CBS) limit, relies on short-range correlation density functionals (with multideterminant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis-set incompleteness error. Contrary to conventional RS-DFT schemes that require an ad hoc range-separation parameter μ, the key ingredient here is a range-separation function μ(r) that automatically adapts to the spatial nonhomogeneity of the basis-set incompleteness error. As illustrative examples, we show how this density-based correction allows us to obtain CCSD(T) atomization and correlation energies near the CBS limit for the G2 set of molecules with compact Gaussian basis sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call