Abstract
Due to image noise, illumination and occlusion, to get an accurate and dense disparity with stereo matching is still a challenge. In this paper, a new dense stereo matching algorithm is proposed. The proposed algorithm first use cross-based regions to compute an initial disparity map which can deal with regions with less or similar texture. Secondly, the improved hierarchical belief propagation scheme is employed to optimize the initial disparity map. Then the left-right consistency check and mean-shift algorithm are used to handle occlusions. Finally, a local high-confidence strategy is used to refine the disparity map. Experiments with the Middlebury dataset validate the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.