Abstract

BackgroundGenetic map based quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits in apple. To facilitate molecular breeding studies of fruit quality traits in apple, we aim to construct a high density map which was efficient for QTL mapping and possible to search for candidate genes directly in mapped QTLs regions.MethodsA total of 1733 F1 seedlings derived from ‘Jonathan’ × ‘Golden Delicious’ was used for the map constructionand QTL analysis. The SNP markers were developed by restriction site-associated DNA sequencing (RADseq). Phenotyping data of fruit quality traits were calculated in 2008-2011. Once QTLs were mapped, candidate genes were searched for in the corresponding regions of the apple genome sequence underlying the QTLs. Then some of the candidate genes were validated using real-time PCR.ResultsA high-density genetic map with 3441 SNP markers from 297 individuals was generated. Of the 3441 markers, 2017 were mapped to ‘Jonathan’ with a length of 1343.4 cM and the average distance between markers was 0.67 cM, 1932 were mapped to ‘Golden Delicious’ with a length of 1516.0 cM and the average distance between markers was 0.78 cM. Twelve significant QTLs linked to the control of fruit weight, fruit firmness, sugar content and fruit acidity were mapped to seven linkage groups. Based on gene annotation, 80, 64 and 17 genes related to fruit weight, fruit firmness and fruit acidity, respectively, were analyzed.Among the 17 candidate genes associated with control of fruit acidity, changes in the expression of MDP0000582174 (MdMYB4) were in agreement with the pattern of changes in malic acid content in apple during ripening, and the relative expression of MDP0000239624 (MdME) was significantly correlated withfruit acidity.ConclusionsWe demonstrated the construction of a dense SNP genetic map in apple using next generation sequencing and that the increased resolution enabled the detection of narrow interval QTLs linked to the three fruit quality traits assessed. The candidate genes MDP0000582174 and MDP0000239624 were found to be related to fruit acidity regulation. We conclude that application of RADseq for genetic map construction improved the precision of QTL detection and should be utilized in future studies on the regulatory mechanisms of important fruit traits in apple.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1946-x) contains supplementary material, which is available to authorized users.

Highlights

  • Genetic map based quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits in apple

  • Genomic DNA of the 318 F1 individuals and two parents, ‘Jonathan’ and ‘Golden Delicious’, was extracted from young leaves using a Genomic DNA Isolation Kit (TianGen, Beijing, China) and processed into restriction site-associated DNA sequencing (RADseq) libraries, following the protocol described by Baird and the colleagues [15]

  • This was the first time that large numbers of SNP markers were developed using RADseq in apple

Read more

Summary

Introduction

Genetic map based quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits in apple. To facilitate molecular breeding studies of fruit quality traits in apple, we aim to construct a high density map which was efficient for QTL mapping and possible to search for candidate genes directly in mapped QTLs regions. MAS is dependent on high-density genetic linkage maps. Before 2010, a number of genetic maps were constructed using different types of markers, such as random amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), sequence characterized amplified regions (SCARs), and simple sequence repeats (SSRs). A saturated reference map for apple using 840 molecular markers (475 AFLPs, 235 RAPDs, 129 SSRs, and 1 SCAR) was published in 2003 [1]. Genetic maps of ‘Braeburn’ and ‘Telamon’ were constructed in 2005 using 257 F1 mapping populations. Genetic maps of apple rootstock ‘M9’ × ‘R5’ have been produced containing 316 newly developed SSR marker loci [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call