Abstract

Clustering algorithms are used prominently in co-citation analysis by analysts aiming to reveal research streams within a field. However, clustering of widely cited articles is not robust to small variations in citation patterns. We propose an alternative algorithm, dense network sub-grouping, which identifies dense groups of co-cited references. We demonstrate the algorithm using a data set from the field of family business research and compare it to two alternative methods, multidimensional scaling and clustering. We also introduce a free software tool, Sitkis, that implements the algorithm and other common bibliometric methods. The software identifies journal-, country- and university-specific citation patterns and co-citation groups, enabling the identification of “invisible colleges.”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.