Abstract
Digital speckle pattern interferometry (DSPI) is a new and efficient technique for measuring the difference in out-of-plane displacement. However, DSPI fringes contain low spatial information degraded with random speckle noise and background intensity. A denoising scheme based on fast bi-dimensional ensemble empirical mode decomposition (FBEEMD) and energy estimation of bi-dimensional intrinsic mode function (BIMF) is proposed to reduce speckle noise in this paper. Furthermore, the denoising scheme is compared with other denoising methods, and evaluated quantitatively using computer-simulated and experimental DSPI fringes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.